erfc, erfcf, erfcl

< c‎ | numeric‎ | math
Revision as of 12:17, 7 June 2014 by Cubbi (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Common mathematical functions
Basic operations
Exponential functions
Power functions
Trigonometric and hyperbolic functions
Error and gamma functions
Nearest integer floating point operations
Floating point manipulation functions
Macro constants
Defined in header <math.h>
float       erfcf( float arg );
(1) (since C99)
double      erfc( double arg );
(2) (since C99)
long double erfcl( long double arg );
(3) (since C99)
Defined in header <tgmath.h>
#define erfc( arg )
(4) (since C99)
1-3) Computes the complementary error function of arg, that is 1.0-erf(arg), but without loss of precision for large arg
4) Type-generic macro: If arg has type long double, erfcl is called. Otherwise, if arg has integer type or the type double, erfc is called. Otherwise, erfcf is called.


[edit] Parameters

arg - floating point value

[edit] Return value

If no errors occur, value of the complementary error function of arg, that is

or 1-erf(arg), is returned.

If a range error occurs due to underflow, the correct result (after rounding) is returned

[edit] Error handling

Errors are reported as specified in math_errhandling

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is +∞, +0 is returned
  • If the argument is -∞, 2 is returned
  • If the argument is NaN, NaN is returned

[edit] Notes

For the IEEE-compatible type double, underflow is guaranteed if arg > 26.55.

[edit] Example

#include <stdio.h>
#include <math.h>
double normalCDF(double x) // Phi(-∞, x) aka N(x)
    return erfc(-x*sqrt(2))/2;
int main(void)
    puts("normal cumulative distribution function:");
    for(double n=0; n<1; n+=0.1)
        printf("normalCDF(%.2f) %5.2f%%\n", n, 100*normalCDF(n));
    puts("special values:");
    printf("erfc(-Inf) = %f\n", erfc(-INFINITY));
    printf("erfc(Inf) = %f\n", erfc(INFINITY));


normal cumulative distribution function:
normalCDF(0.00) 50.00%
normalCDF(0.10) 57.93%
normalCDF(0.20) 65.54%
normalCDF(0.30) 72.57%
normalCDF(0.40) 78.81%
normalCDF(0.50) 84.13%
normalCDF(0.60) 88.49%
normalCDF(0.70) 91.92%
normalCDF(0.80) 94.52%
normalCDF(0.90) 96.41%
normalCDF(1.00) 97.72%
special values:
erfc(-Inf) = 2.000000
erfc(Inf) = 0.000000

[edit] See also

computes error function
(function) [edit]

[edit] External links

Weisstein, Eric W. "Erfc." From MathWorld--A Wolfram Web Resource.