Array declaration

< cpp‎ | language
Revision as of 19:59, 31 May 2013 by P12bot (Talk | contribs)

C++ language
General topics
Flow control
Conditional execution statements
Iteration statements (loops)
Jump statements
Function declaration
Lambda function declaration
inline specifier
Exception specifications (deprecated)
noexcept specifier (C++11)
decltype (C++11)
auto (C++11)
alignas (C++11)
Storage duration specifiers
Alternative representations
Boolean - Integer - Floating-point
Character - String - nullptr (C++11)
User-defined (C++11)
Attributes (C++11)
typedef declaration
Type alias declaration (C++11)
Implicit conversions - Explicit conversions
static_cast - dynamic_cast
const_cast - reinterpret_cast
Memory allocation
Class-specific function properties
Special member functions

Declares an object of array type.



An array declaration is any simple declaration whose declarator has the form

noptr-declarator [ constexpr(optional) ] attr(optional) (1)
noptr-declarator - any valid declarator, but if it begins with *, &, or &&, it has to be surrounded by parentheses.
attr(C++11) - optional list of attributes
constexpr - a constant expression of integral type which evaluates to a value greater than zero

A declaration of the form T a[N];, declares a as an array object that consists of N contiguously allocated objects of type T. The elements of an array are numbered 0...N-1, and may be accessed with the member access operator [], as in a[0] ... a[N-1].

Arrays can be constructed from any fundamental type (except void), pointers, pointers to members, classes, enumerations, or from other arrays (in which case the array is said to be multi-dimensional). There are no arrays of references, arrays of functions, or arrays of incomplete types.


Objects of array type cannot be modified: even though they are lvalues (e.g. an address of array can be taken), they cannot appear on the left hand side of an assignment operator:

int a[3] = {1,2,3}, b[3] = {4,5,6};
int (*p)[3] = &a; // okay, address of a can be taken
a = b;            // error, a is an array
struct { int c[3]; } s1, s2 = {3,4,5};
s1 = s2; // okay: implicity-defined copy assignment operator
         // can assign data members of array type

Array to pointer decay

There is an implicit conversion from lvalues and rvalues of array type to rvalues of pointer type: it constructs a pointer to the first element of an array. This conversion is used whenever arrays appear in context where arrays are not expected, but pointers are:

#include <iostream>
#include <numeric>
#include <iterator>
void g(int (&a)[3])
    std::cout << a[0] << '\n';
void f(int* p) {
    std::cout << *p << '\n';
int main()
    int a[3] = {1,2,3};
    int* p = a;
    std::cout << sizeof a << '\n'  // prints size of array
              << sizeof p << '\n'; // prints size of a pointer
    // where arrays are acceptable, but pointers aren't, only arrays may be used
    g(a); // OK: function takes an array by reference
//  g(p); // Error
    for(int n: a)              // OK: arrays can be used in range for loops
        std::cout << n << ' '; // prints elements of the array
//    for(int n: p)            // Error
//        std::cout << n << ' '; 
    std::iota(std::begin(a), std::end(a), 7); // OK: begin/end take arrays
//  std::iota(std::begin(p), std::end(p), 7); // Error
    // where pointers are acceptable, but arrays aren't, both may be used:
    f(a); // OK: function takes a pointer
    f(p); // OK: function takes a pointer
    std::cout << *a << '\n' // prints the first element
              << *p << '\n' // same
              << *(a+1) << ' ' << a[1] << '\n' // prints the second
              << *(p+1) << ' ' << p[1] << '\n';

Multidimensional arrays

When the element type of an array is another array, it is said that the array is multidimensional:

// array of 2 arrays of 3 ints each
int a[2][3] = {{1,2,3},  // can be viewed as a 2x3 matrix
               {4,5,6}}; // with row-major layout

Note that when array-to-pointer conversion is applied, a multidimensional array is converted to a pointer to its first element, e.g., pointer to the first row:

int a[2][3]; // 2x3 matrix
int (*p1)[3] = a; // pointer to the first 3-element row
int b[3][3][3]; // 3x3x3 cube
int (*p2)[3][3] = a; // pointer to the first 3x3 plane

Arrays of unknown bound

If constexpr is omitted in the declaration of an array, the type declared is "array of unknown bound of T", which is a kind of incomplete type, except when used in a declaration with an aggregate initializer:

extern int x[]; // the type of x is "array of unknown bound of int"
int a[] = {1,2,3}; // the type of a is "array of 3 int"

Array rvalues

An array rvalue expression may be formed by accessing an array member of a class rvalue or by using an identity template to construct an array temporary directly:

#include <iostream>
#include <type_traits>
void f(int (&&x)[2][3])
    std::cout << sizeof x << '\n';
struct X {
    int i[2][3];
} x;
template<typename T> using identity = T;
int main()
    std::cout << sizeof X().i << '\n'; // size of the arrary
    f(X().i); // OK, binds to rvalue
//  f(x.i);   // Error: cannot bind to lvalue
    f(identity<int[][3]>{{1,2,3},{4,5,6}}); // OK, binds to rvalue