Implicit conversions
When an expression is used in the context where a value of a different type is expected, conversion may occur:
int n = 1L; // expression 1L has type long, int is expected n = 2.1; // expression 2.1 has type double, int is expected char *p = malloc(10); // expression malloc(10) has type void*, char* is expected
Conversions take place in the following situations:
[edit] Conversion as if by assignment
 In the assignment operator, the value of the righthand operand is converted to the unqualified type of the lefthand operand.
 In scalar initialization, the value of the initializer expression is converted to the unqualified type of the object being initialized
 In a functioncall expression, to a function that has a prototype, the value of each argument expression is converted to the type of the unqualified declared types of the corresponding parameter
 In a return statement, the value of the operand of
return
is converted to an object having the return type of the function
Note that actual assignment, in addition to the conversion, also removes extra range and precision from floatingpoint types and prohibits overlaps; those characteristics do not apply to conversion as if by assignment.
[edit] Default argument promotions
In a function call expression when the call is made to
Each argument of integer type undergoes integer promotion (see below), and each argument of type float is implicitly converted to the type double
int add_nums(int count, ...); int sum = add_nums(2, 'c', true); // add_nums is called with three ints: (2, 99, 1)
Note that float complex and float imaginary are not promoted to double complex and double imaginary in this context.
[edit] Usual arithmetic conversions
The arguments of the following arithmetic operators undergo implicit conversions for the purpose of obtaining the common real type, which is the type in which the calculation is performed:
 binary arithmetic *, /, %, +, 
 relational operators <, >, <=, >=, ==, !=
 binary bitwise arithmetic &, ^, ,
 the conditional operator ?:
 First of all, both operands undergo integer promotions (see below). Then
 If the types after promotion are the same, that type is the common type
 Otherwise, if both operands after promotion have the same signedness (both signed or both unsigned), the operand with the lesser conversion rank (see below) is implicitly converted to the type of the operand with the greater conversion rank
 Otherwise, the signedness is different: If the operand with the unsigned type has conversion rank greater or equal than the rank of the type of the signed operand, then the operand with the signed type is implicitly converted to the unsigned type
 Otherwise, the signedness is different and the signed operand's rank is greater than unsigned operand's rank. In this case, if the signed type can represent all values of the unsigned type, then the operand with the unsigned type is implicitly converted to the type of the signed operand.
 Otherwise, both operands undergo implicit conversion to the unsigned type counterpart of the signed operand's type.
1.f + 20000001; // int is converted to float, giving 20000000.00 // addition and then rounding to float gives 20000000.00 (char)'a' + 1L; // First, char is promoted back to int. // this is signed + signed case, different rank // int is converted to long, the result is 98 signed long 2u  10; // signed / unsigned, same rank // 10 is converted to unsigned, unsigned math is modulo UINT_MAX+1 // for 32 bit ints, result is 4294967288 of type unsigned int (aka UINT_MAX7) 0UL  1LL; // signed/unsigned diff rank, rank of signed is greater. // If sizeof(long) == sizeof(long long), signed cannot represent all unsigned // this is the last case: both operands are converted to unsigned long long // the result is 18446744073709551615 (ULLONG_MAX) of type unsigned long long
The result type is determined as follows:
 if both operands are complex, the result type is complex
 if both operands are imaginary, the result type is imaginary
 if both operands are real, the result type is real
 if the two floatingpoint operands have different type domains (complex vs. real, complex vs imaginary, or imaginary vs. real), the result type is complex
double complex z = 1 + 2*I; double f = 3.0; z + f; // z remains asis, f is converted to double, the result is double complex
As always, the result of a floatingpoint operator may have greater range and precision than is indicated by its type (see FLT_EVAL_METHOD).
Note: real and imaginary operands are not implicitly converted to complex because doing so would require extra computation, while producing undesirable results in certain cases involving infinities, NaNs and signed zeros. For example, if reals were converted to complex, 2.0×(3.0+i∞) would evaluate as (2.0+i0.0)×(3.0+i∞) ⇒ (2.0×3.0–0.0×∞) + i(2.0×∞+0.0×3.0) ⇒ NaN+i∞ rather than the correct 6.0+i∞. If imaginaries were converted to complex, i2.0×(∞+i3.0) would evaluate as (0.0+i2.0) × (∞+i3.0) ⇒ (0.0×∞ – 2.0×3.0) + i(0.0×3.0 + 2.0×∞) ⇒ NaN + i∞ instead of –6.0 + i∞.
Note: regardless of usual arithmetic conversions, the calculation may always be performed in a narrower type than specifier by these rules under the asif rule
[edit] Value transformations
[edit] Lvalue conversion
Any lvalue expression of any nonarray type, when used in any context other than
 as the operand of the addressof operator (if allowed)
 as the operand of the pre/post increment and decrement operators.
 as the lefthand operand of the member access (dot) operator.
 as the lefthand operand of the assignment and compound assignment operators.
 as the operand of sizeof
undergoes lvalue conversion: the type remains the same, but loses const/volatile/restrictqualifiers and atomic properties, if any. The value remains the same, but loses its lvalue properties (the address may no longer be taken).
If the lvalue has incomplete type, the behavior is undefined.
If the lvalue designates an object of automatic storage duration whose address was never taken and if that object was uninitialized (not declared with an initializer and no assignment to it has been performed prior to use), the behavior is undefined.
This conversion models the memory load of the value of the object from its location.
volatile int n = 1; int x = n; // lvalue conversion on n reads the value of n volatile int* p = &n; // no lvalue conversion: does not read the value of n
[edit] Array to pointer conversion
Any lvalue expression of array type, when used in any context other than
 as the operand of the addressof operator
 as the operand of sizeof
 as the string literal used for array initialization
undergoes a conversion to the nonlvalue pointer to its first element.
If the array was declared register, the behavior is undefined.
int a[3], b[3][4]; int* p = a; // conversion to &a[0] int (*q)[4] = b; // conversion to &b[0]
[edit] Function to pointer conversion
Any function designator expression, when used in any context other than
 as the operand of the addressof operator
 as the operand of sizeof
undergoes a conversion to the nonlvalue pointer to the function designated by the expression.
int f(int); int (*p)(int) = f; // conversion to &f (***p)(1); // repeated dereference to f and conversion back to &f
[edit] Implicit conversion semantics
Implicit conversion, whether as if by assignment or a usual arithmetic conversion, consists of two stages:
[edit] Compatible types
Conversion of a value of any type to any compatible type is always a noop and does not change the representation.
uint8_t (*a)[10]; // if uint8_t is a typedef to unsigned char unsigned char (*b)[] = a; // then these pointer types are compatible
[edit] Integer promotions
Integer promotion is the implicit conversion of a value of any integer type with rank less or equal to rank of int or of a bit field of type _Bool, int, signed int, unsigned int, to the value of type int or unsigned int
If int can represent the entire range of values of the original type (or the range of values of the original bit field), the value is converted to type int. Otherwise the value is converted to unsigned int.
Integer promotions preserve the value, including the sign:
int main(void) { void f(); // oldstyle function declaration char x = 'a'; // integer conversion from int to char f(x); // integer promotion from char back to int } void f(x) int x; {} // the function expects int
rank above is a property of every integer type and is defined as follows:
Note: integer promotions are applied only
 as part of usual arithmetic conversions (see above)
 as part of default argument promotions (see above)
 to the operand of the unary arithmetic operators + and 
 to the operand of the unary bitwise operator ~
 to both operands of the shift operators << and >>
[edit] Boolean conversion
A value of any scalar type can be implicitly converted to _Bool. The values that compare equal to zero are converted to 0, all other values are converted to 1
bool b1 = 0.5; // b1 == 1 (0.5 converted to int would be zero) bool b2 = 2.0*_Imaginary_I; // b2 == 1 (but converted to int would be zero) bool b3 = 0.0 + 3.0*I; // b3 == 1 (but converted to int would be zero) bool b4 = 0.0/0.0; // b4 == 1 (NaN does not compare equal to zero)
[edit] Integer conversions
A value of any integer type can be implicitly converted to any other integer type. Except where covered by promotions and boolean conversions above, the rules are:
 if the target type can represent the value, the value is unchanged
 otherwise, if the target type is unsigned, the value 2b
, where b is the number of bits in the target type, is repeatedly subtracted or added to the source value until the result fits in the target type. In other words, unsigned integers implement modulo arithmetic.  otherwise, if the target type is signed, the behavior is implementationdefined (which may include raising a signal)
char x = 'a'; // int > char, result unchanged unsigned char n = 123456; // target is unsigned, result is 192 (that is, 123456+483*256) signed char m = 123456; // target is signed, result is implementationdefined assert(sizeof(int) > 1); // assert fails: // operator > requests conversion of 1 to size_t, // target is unsigned, result is SIZE_MAX
[edit] Real floatinginteger conversions
A finite value of any real floating type can be implicitly converted to any integer type. Except where covered by boolean conversion above, the rules are:
 The fractional part is discarded (truncated towards zero).
 If the resulting value can be represented by the target type, that value is used
 otherwise, the behavior is undefined
int n = 3.14; // n == 3 int x = 1e10; // undefined behavior for 32bit int
A value of any integer type can be implicitly converted to any real floating type.
 if the value can be represented exactly by the target type, it is unchanged
 if the value can be represented, but cannot be represented exactly, the result is the nearest higher or the nearest lower value (in other words, rounding direction is implementationdefined), although if IEEE arithmetic is supported, rounding is to nearest. It is unspecified whether FE_INEXACT is raised in this case.
 if the value cannot be represented, the behavior is undefined, although if IEEE arithmetic is supported, FE_INVALID is raised and the result value is unspecified.
The result of this conversion may have greater range and precision than its target type indicates (see FLT_EVAL_METHOD.
If control over FE_INEXACT is needed in floatingtointeger conversions, rint and nearbyint may be used.
double d = 10; // d = 10.00 float f = 20000001; // f = 20000000.00 (FE_INEXACT) float x = 1+(long long)FLT_MAX; // undefined behavior
[edit] Real floating point conversions
A value of any real floating type can be implicitly converted to any other real floating type.
 If the value can be represented by the target type exactly, it is unchanged
 if the value can be represented, but cannot be represented exactly, the result is the nearest higher or the nearest lower value (in other words, rounding direction is implementationdefined), although if IEEE arithmetic is supported, rounding is to nearest
 if the value cannot be represented, the behavior is undefined
This section is incomplete
Reason: check IEEE if appropriatelysigned infinity is required
The result of this conversion may have greater range and precision than its target type indicates (see FLT_EVAL_METHOD.
double d = 0.1; // d = 0.1000000000000000055511151231257827021181583404541015625 float f = d; // f = 0.100000001490116119384765625 float x = 2*(double)FLT_MAX; // undefined
[edit] Complex type conversions
A value of any complex type can be implicitly converted to any other complex type. The real part and the imaginary part individually follow the conversion rules for the real floating types.
[edit] Imaginary type conversions
A value of any imaginary type can be implicitly converted to any other imaginary type. The imaginary part follows the conversion rules for the real floating types.
double imaginary d = 0.1*_Imaginary_I; float imaginary f = d; // f is 0.100000001490116119384765625*I
[edit] Realcomplex conversions
A value of any real floating type can be implicitly converted to any complex type.
 The real part of the result is determined by the conversion rules for the real floating types
 The imaginary part of the result is positive zero (or unsigned zero on nonIEEE systems)
A value of any complex type can be implicitly converted to any real floating type
 The real part is converted following the rules for the real floating types
 The imaginary part is discarded
Note: in complextoreal conversion, a NaN in the imaginary part will not propagate to the real result.
double complex z = 0.5 + 3*I; float f = z; // the imaginary part is discarded, f is set to 0.5 z = f; // sets z to 0.5 + 0*I
[edit] Realimaginary conversions
A value of any imaginary type can be implicitly converted to any real type (integer or floatingpoint). The result is always a positive (or unsigned) zero, except when the target type is _Bool, in which case boolean conversion rules apply.
A value of any real type can be implicitly converted to any imaginary type. The result is always a positive imaginary zero.
double imaginary z = 3*I; bool b = z; // Boolean conversion: sets b to true float f = z; // Realimaginary conversion: sets f to 0.0 z = 3.14; // Imaginaryreal conversion: sets z to 0*_Imaginary_I
[edit] Compleximaginary conversions
A value of any imaginary type can be implicitly converted to any complex type.
 The real part of the result is the positive zero
 The imaginary part of the result follows the conversion rules for the corresponding real types
A value of any complex type can be implicitly converted to any imaginary type
 The real part is discarded
 The imaginary part of the result follows the conversion rules for the corresponding real types
double imaginary z = I * (3*I); // the complex result 3.0+0i loses real part // sets z to 0*_Imaginary_I
[edit] Pointer conversions
A pointer to void can be implicitly converted to and from any pointer to object type with the following semantics:
 If a pointer to object is converted to a pointer to void and back, its value compares equal to the original pointer.
 No other guarantees are offered
int* p = malloc(10 * sizeof(int)); // malloc returns void*
A pointer to an unqualified type may be implicitly converted to the pointer to qualified version of that type (in other words, const, volatile, and restrict qualifiers can be added. The original pointer and the result compare equal.
int n; const int* p = &n; // &n has type int*
Any integer constant expression with value 0 as well as integer pointer expression with value zero cast to the type void* can be implicitly converted to any pointer type (both pointer to object and pointer to function). The result is the null pointer value of its type, guaranteed to compare unequal to any nonnull pointer value of that type. This integer or void* expression is known as null pointer constant and the standard library provides one definition of this constant as the macro NULL .
int* p = 0; double* q = NULL;
[edit] Notes
Although signed integer overflow in any arithmetic operator is undefined behavior, overflowing a signed integer type in an integer conversion is merely unspecified behavior.
On the other hand, although unsigned integer overflow in any arithmetic operator (and in integer conversion) is a welldefined operation and follows the rules of modulo arithmetic, overflowing an unsigned integer in a floatingtointeger conversion is undefined behavior: the values of real floating type that can be converted to unsigned integer are the values from the open interval (1; Unnn_MAX+1).
unsigned int n = 1.0; // undefined behavior
Conversions between pointers and integers (except from pointer to _Bool and from integer constant expression with the value zero to pointer), between pointers to objects (except where either to or from is a pointer to void) and conversions between pointers to functions (except when the functions have compatible types) are never implicit and require a cast operator.
There are no conversions (implicit or explicit) between pointers to functions and pointers to objects (including void*) or integers.
[edit] References
 C11 standard (ISO/IEC 9899:2011):
 6.3 Conversions (p: 5056)
 C99 standard (ISO/IEC 9899:1999):
 6.3 Conversions (p: 4248)
 C89/C90 standard (ISO/IEC 9899:1990):
 3.2 Conversions
[edit] See also
C++ documentation for Implicit conversions
