Namespaces
Variants
Views
Actions

erf, erff, erfl

From cppreference.com
< c‎ | numeric‎ | math
 
 
 
Common mathematical functions
Functions
Basic operations
(C99)
(C99)
(C99)
(C99)
(C99)
(C99)(C99)(C99)
Exponential functions
(C99)
(C99)
(C99)
(C99)
Power functions
(C99)
(C99)
Trigonometric and hyperbolic functions
(C99)
(C99)
(C99)
Error and gamma functions
erf
(C99)
(C99)
(C99)
(C99)
Nearest integer floating point operations
(C99)(C99)(C99)
(C99)
(C99)(C99)(C99)
Floating point manipulation functions
(C99)(C99)
(C99)
(C99)
Classification
(C99)
(C99)
(C99)
Macro constants
 
Defined in header <math.h>
float       erff( float arg );
(1) (since C99)
double      erf( double arg );
(2) (since C99)
long double erfl( long double arg );
(3) (since C99)
Defined in header <tgmath.h>
#define erf( arg )
(4) (since C99)
1-3) Computes the error function of arg.
4) Type-generic macro: If arg has type long double, erfl is called. Otherwise, if arg has integer type or the type double, erf is called. Otherwise, erff is called.

Contents

[edit] Parameters

arg - floating point value

[edit] Return value

If no errors occur, value of the error function of arg, that is
2
π
arg
0
e-t2
dt
, is returned. If a range error occurs due to underflow, the correct result (after rounding), that is
2*arg
π
, is returned.

[edit] Error handling

Errors are reported as specified in math_errhandling.

If the implementation supports IEEE floating-point arithmetic (IEC 60559),

  • If the argument is ±0, ±0 is returned
  • If the argument is ±∞, ±1 is returned
  • If the argument is NaN, NaN is returned

[edit] Notes

Underflow is guaranteed if |arg| < DBL_MIN*(sqrt(π)/2).

erf(
x
σ2
)
is the probability that a measurement whose errors are subject to a normal distribution with standard deviation σ is less than x away from the mean value.

[edit] Example

#include <stdio.h>
#include <math.h>
double phi(double x1, double x2)
{
    return (erf(x2/sqrt(2)) - erf(x1/sqrt(2)))/2;
}
int main(void)
{
    puts("normal variate probabilities:");
    for(int n=-4; n<4; ++n)
        printf("[%2d:%2d]: %5.2f%%\n", n, n+1, 100*phi(n, n+1));
 
    puts("special values:");
    printf("erf(-0) = %f\n", erf(-0.0));
    printf("erf(Inf) = %f\n", erf(INFINITY));
}

Output:

normal variate probabilities:
[-4:-3]:  0.13%
[-3:-2]:  2.14%
[-2:-1]: 13.59%
[-1: 0]: 34.13%
[ 0: 1]: 34.13%
[ 1: 2]: 13.59%
[ 2: 3]:  2.14%
[ 3: 4]:  0.13%
special values:
erf(-0) = -0.000000
erf(Inf) = 1.000000

[edit] See also

(C99)(C99)(C99)
computes complementary error function
(function) [edit]

[edit] External links

Weisstein, Eric W. "Erf." From MathWorld--A Wolfram Web Resource.