throw expression

< cpp‎ | language

Signals an erroneous condition and executes an error handler.


[edit] Syntax

throw expression (1)
throw (2)

[edit] Explanation

See try-catch block for more information about try and catch (exception handler) blocks
1) First, copy-initializes the exception object from expression (this may call the move constructor for rvalue expression, and the copy/move may be subject to copy elision), then transfers control to the exception handler with the matching type whose compound statement or member initializer list was most recently entered and not exited by this thread of execution.
2) Rethrows the currently handled exception. Abandons the execution of the current catch block and passes control to the next matching exception handler (but not to another catch clause after the same try block: its compound-statement is considered to have been 'exited'), reusing the existing exception object: no new objects are made. This form is only allowed inside a catch block (it calls std::terminate if used otherwise). The catch clause associated with a function-try-block must exit via rethrowing if used on a constructor.

See std::terminate and std::unexpected for the handling of errors that arise during exception handling.

[edit] The exception object

The exception object is a temporary object in unspecified storage that is constructed by the throw expression.

The type of the exception object is the static type of expression with top-level cv-qualifiers removed. Array and function types are adjusted to pointer and pointer to function types, respectively. If the type of the exception object would be an incomplete type or pointer to incomplete type other than pointer to (cv-qualified) void, the throw-expression is a compile-time error. If the type of expression is a class type, its copy/move constructor and destructor must be accessible even if copy elision takes place.

Unlike other temporary objects, the exception object is considered to be an lvalue argument when initializing the catch clause parameters, so it can be caught by lvalue reference, modified, and rethrown.

The exception object persists until the last catch clause exits other than by rethrowing (in which case it is destroyed immediately after the destruction of the catch clause's parameter), or until the last std::exception_ptr that references this object is destroyed (in which case the exception object is destroyed just before the destructor of std::exception_ptr returns.

[edit] Stack unwinding

Once the exception object is constructed, the control flow works backwards (up the call stack) until it reaches the start of a try block, at which point the parameters of all associated catch blocks are compared, in order of appearance, with the type of the exception object to find a match (see try-catch for details on this process). If no match is found, the control flow continues to unwind the stack until the next try block, and so on. If a match is found, the control flow jumps to the matching catch block.

As the control flow moves up the call stack, destructors are invoked for all objects with automatic storage duration constructed since the corresponding try-block was entered, in reverse order of completion of their constructors.

If an exception is thrown from a constructor or (rare) from a destructor of an object (regardless of the object's storage duration), destructors are called for all fully-constructed non-static non-variant members and base classes, in reverse order of completion of their constructors.

If a delegating constructor exits with an exception after the non-delegating constructor successfully completed, the destructor for this object is called. (since C++11)

If the exception is thrown from a constructor that is invoked by a new-expression, the matching deallocation function is called, if available.

This process is called stack unwinding.

If any destructor called during stack unwinding exits with an exception, std::terminate is called.

[edit] Notes

When rethrowing exceptions, the second form must be used to avoid object slicing in the (typical) case where exception objects use inheritance:

try {
    std::string("abc").substr(10); // throws std::length_error
} catch(const std::exception& e) {
    std::cout << e.what() << '\n';
//  throw e; // copy-initializes a new exception object of type std::exception
    throw;   // rethrows the exception object of type std::length_error

The throw-expression is classified as prvalue expression of type void. Like any other expression, it may be a sub-expression in another expression, most commonly in the conditional operator:

double f(double d)
    return d > 1e7 ? throw std::overflow_error("too big") : d;
int main()  
    try {
        std::cout << f(1e10) << '\n';
    } catch (const std::overflow_error& e) {
        std::cout << e.what() << '\n';

[edit] Keywords


[edit] Example

[edit] See also