Namespaces
Variants
Views
Actions

std::uninitialized_fill_n

From cppreference.com
< cpp‎ | memory
 
 
 
 
Defined in header <memory>
(1)
template< class ForwardIt, class Size, class T >
void uninitialized_fill_n( ForwardIt first, Size count, const T& value );
(until C++11)
template< class ForwardIt, class Size, class T >
ForwardIt uninitialized_fill_n( ForwardIt first, Size count, const T& value );
(since C++11)
template< class ExecutionPolicy, class ForwardIt, class Size, class T >
ForwardIt uninitialized_fill_n( ExecutionPolicy&& policy, ForwardIt first, Size count, const T& value );
(2) (since C++17)
1) Copies the given value value to the first count elements in an uninitialized memory area beginning at first as if by
for (; n--; ++first)
  ::new (static_cast<void*>(std::addressof(*first)))
     typename iterator_traits<ForwardIterator>::value_type(x);
If an exception is thrown during the initialization, the function has no effects.
2) Same as (1), but executed according to policy. This overload does not participate in overload resolution unless std::is_execution_policy_v<std::decay_t<ExecutionPolicy>> is true

Contents

[edit] Parameters

first - the beginning of the range of the elements to initialize
count - number of elements to construct
value - the value to construct the elements with
Type requirements
-
ForwardIt must meet the requirements of ForwardIterator.

[edit] Return value

(none) (until C++11)

Iterator to the element past the last element copied.

(since C++11)

[edit] Complexity

Linear in count.

[edit] Exceptions

The overload with a template parameter named ExecutionPolicy reports errors as follows:

  • If execution of a function invoked as part of the algorithm throws an exception,
  • if policy is std::parallel_vector_execution_policy, std::terminate is called
  • if policy is std::sequential_execution_policy or std::parallel_execution_policy, the algorithm exits with an std::exception_list containing all uncaught exceptions. If there was only one uncaught exception, the algorithm may rethrow it without wrapping in std::exception_list. It is unspecified how much work the algorithm will perform before returning after the first exception was encountered.
  • if policy is some other type, the behavior is implementation-defined
  • If the algorithm fails to allocate memory (either for itself or to construct an std::exception_list when handling a user exception), std::bad_alloc is thrown.

[edit] Possible implementation

template< class ForwardIt, class Size, class T >
ForwardIt uninitialized_fill_n(ForwardIt first, Size count, const T& value)
{
    typedef typename std::iterator_traits<ForwardIt>::value_type Value;
    ForwardIt current = first;
    try {
        for (; count > 0; ++current, (void) --count) {
            ::new (static_cast<void*>(std::addressof(*current))) Value(value);
        }
        return current;
    } catch (...) {
        for (; first != current; ++first) {
            first->~Value();
        }
        throw;
    }
}

[edit] Example

#include <algorithm>
#include <iostream>
#include <memory>
#include <string>
#include <tuple>
 
int main()
{
    std::string* p;
    std::size_t sz;
    std::tie(p, sz) = std::get_temporary_buffer<std::string>(4);
    std::uninitialized_fill_n(p, sz, "Example");
 
    for (std::string* i = p; i != p+sz; ++i) {
        std::cout << *i << '\n';
        i->~basic_string<char>();
    }
    std::return_temporary_buffer(p);
}

Output:

Example
Example
Example
Example

[edit] See also

copies an object to an uninitialized area of memory, defined by a range
(function template) [edit]
parallelized version of std::uninitialised_fill_n
(function template) [edit]