< cpp‎ | thread
Defined in header <condition_variable>
class condition_variable;
(since C++11)

The condition_variable class is a synchronization primitive that can be used to block a thread, or multiple threads at the same time, until:

  • a notification is received from another thread
  • a timeout expires, or
  • a spurious wakeup occurs

Any thread that intends to wait on std::condition_variable has to acquire a std::unique_lock first. The wait operations atomically release the mutex and suspend the execution of the thread. When the condition variable is notified, the thread is awakened, and the mutex is reacquired.

Condition variables permit concurrent invocation of the wait, wait_for, wait_until, notify_one and notify_all member functions.

The class std::condition_variable is a StandardLayoutType. It is not CopyConstructible, MoveConstructible, CopyAssignable, MoveAssignable.


[edit] Member types

Member type Definition
native_handle_type implementation-defined

[edit] Member functions

constructs the object
(public member function) [edit]
destructs the object
(public member function) [edit]
not copy-assignable
(public member function) [edit]
notifies one waiting thread
(public member function) [edit]
notifies all waiting threads
(public member function) [edit]
blocks the current thread until the condition variable is woken up
(public member function) [edit]
blocks the current thread until the condition variable is woken up or after the specified timeout duration
(public member function) [edit]
blocks the current thread until the condition variable is woken up or until specified time point has been reached
(public member function) [edit]
Native handle
returns the native handle
(public member function) [edit]

[edit] Example

condition_variable is typically used in combination with a std::mutex to facilitate inter-thread communication

#include <iostream>
#include <string>
#include <thread>
#include <mutex>
#include <condition_variable>
std::mutex m;
std::condition_variable cv;
std::string data;
bool ready = false;
bool processed = false;
void worker_thread()
    // Wait until main() sends data
    std::unique_lock<std::mutex> lk(m);
    cv.wait(lk, []{return ready;});
    // after the wait, we own the lock.
    std::cout << "Worker thread is processing data\n";
    data += " after processing";
    // Send data back to main()
    processed = true;
    std::cout << "Worker thread signals data processing completed\n";
    // Manual unlocking is done before notifying, to avoid waking up
    // the waiting thread only to block again (see notify_one for details)
int main()
    std::thread worker(worker_thread);
    data = "Example data";
    // send data to the worker thread
        std::lock_guard<std::mutex> lk(m);
        ready = true;
        std::cout << "main() signals data ready for processing\n";
    // wait for the worker
        std::unique_lock<std::mutex> lk(m);
        cv.wait(lk, []{return processed;});
    std::cout << "Back in main(), data = " << data << '\n';


main() signals data ready for processing
Worker thread is processing data
Worker thread signals data processing completed
Back in main(), data = Example data after processing