< cpp‎ | types
Type support
Basic types
Fundamental types
Fixed width integer types (C++11)
Numeric limits
C numeric limits interface
Runtime type information
Type traits
Type categories
Type properties
(C++11)(deprecated in C++17)
Type trait constants
Supported operations
Relationships and property queries
Type modifications
Type transformations
(C++11)(deprecated in C++17)(C++17)
Defined in header <type_traits>
template< bool B, class T = void >
struct enable_if;
(since C++11)

If B is true, std::enable_if has a public member typedef type, equal to T; otherwise, there is no member typedef.

This metafunction is a convenient way to leverage SFINAE to conditionally remove functions from overload resolution based on type traits and to provide separate function overloads and specializations for different type traits. std::enable_if can be used as an additional function argument (not applicable to operator overloads), as a return type (not applicable to constructors and destructors), or as a class template or function template parameter.


[edit] Member types

Type Definition
type either T or no such member, depending on the value of B

[edit] Helper types

template< bool B, class T = void >
using enable_if_t = typename enable_if<B,T>::type;
(since C++14)

[edit] Possible implementation

template<bool B, class T = void>
struct enable_if {};
template<class T>
struct enable_if<true, T> { typedef T type; };

[edit] Notes

A common mistake is to declare two function templates that differ only in their default template arguments. This is illegal because default template arguments are not part of function template's signature, and declaring two different function templates with the same signature is illegal.

struct T {
    enum { int_t,float_t } m_type;
    template <typename Integer,
              typename = std::enable_if_t<std::is_integral<Integer>::value>
    T(Integer) : m_type(int_t) {}
    template <typename Floating,
              typename = std::enable_if_t<std::is_floating_point<Floating>::value>
    T(Floating) : m_type(float_t) {} // error: cannot overload

[edit] Example

#include <type_traits>
#include <iostream>
#include <string>
namespace detail { struct inplace_t{}; }
void* operator new(std::size_t, void* p, detail::inplace_t) {
    return p;
// #1, enabled via the return type
template<class T,class... Args>
typename std::enable_if<std::is_trivially_constructible<T,Args&&...>::value>::type 
    construct(T* t,Args&&... args) 
    std::cout << "constructing trivially constructible T\n";
// #2
template<class T, class... Args>
std::enable_if_t<!std::is_trivially_constructible<T,Args&&...>::value> //Using helper type
    construct(T* t,Args&&... args) 
    std::cout << "constructing non-trivially constructible T\n";
    new(t, detail::inplace_t{}) T(args...);
// #3, enabled via a parameter
template<class T>
void destroy(T* t, 
             typename std::enable_if<std::is_trivially_destructible<T>::value>::type* = 0) 
    std::cout << "destroying trivially destructible T\n";
// #4, enabled via a template parameter
template<class T,
         typename std::enable_if<
             !std::is_trivially_destructible<T>{} &&
             (std::is_class<T>{} || std::is_union<T>{}),
            int>::type = 0>
void destroy(T* t)
    std::cout << "destroying non-trivially destructible T\n";
// #5, enabled via a template parameter
template<class T,
	typename = std::enable_if_t<std::is_array<T>::value> >
void destroy(T* t) // note, function signature is unmodified
    for(std::size_t i = 0; i < std::extent<T>::value; ++i) {
template<class T,
	typename = std::enable_if_t<std::is_void<T>::value> >
void destroy(T* t){} // error: has the same signature with #5
// the partial specialization of A is enabled via a template parameter
template<class T, class Enable = void>
class A {}; // primary template
template<class T>
class A<T, typename std::enable_if<std::is_floating_point<T>::value>::type> {
}; // specialization for floating point types
int main()
    std::aligned_union_t<0,int,std::string> u;
    A<int> a1; // OK, matches the primary template
    A<double> a2; // OK, matches the partial specialization


constructing trivially constructible T
destroying trivially destructible T
constructing non-trivially constructible T
destroying non-trivially destructible T

[edit] See also

void variadic alias template
(alias template) [edit]