std::result_of, std::invoke_result

< cpp‎ | types
Type support
Basic types
Fundamental types
Fixed width integer types (C++11)
Numeric limits
C numeric limits interface
Runtime type information
Type traits
Type categories
Type properties
(C++11)(deprecated in C++17)
Type trait constants
Supported operations
Relationships and property queries
Type modifications
Type transformations
(C++11)(deprecated in C++17)(C++17)
Defined in header <type_traits>
template< class >

class result_of; // not defined

template< class F, class... ArgTypes >

class result_of<F(ArgTypes...)>;
(1) (since C++11)
(deprecated in C++17)
template< class F, class... ArgTypes>
class invoke_result;
(2) (since C++17)

Deduces the return type of an INVOKE expression at compile time.

F must be a callable type, reference to function, or reference to callable type. Invoking F with ArgTypes... must be a well-formed expression (since C++11)
F and all types in ArgTypes can be any complete type, array of unknown bound, or (possibly cv-qualified) void (since C++14)


[edit] Member types

Member type Definition
type the return type of the Callable type F if invoked with the arguments ArgTypes.... Only defined if F can be called with the arguments ArgTypes... in unevaluated context. (since C++14)

[edit] Helper types

template< class T >
using result_of_t = typename result_of<T>::type;
(1) (since C++14)
(deprecated in C++17)
template< class F, class... ArgTypes>
using invoke_result_t = typename invoke_result<F, ArgTypes...>::type;
(2) (since C++17)

[edit] Possible implementation

namespace detail {
template <class F, class... Args>
inline auto INVOKE(F&& f, Args&&... args) ->
template <class Base, class T, class Derived>
inline auto INVOKE(T Base::*pmd, Derived&& ref) ->
template <class PMD, class Pointer>
inline auto INVOKE(PMD&& pmd, Pointer&& ptr) ->
template <class Base, class T, class Derived, class... Args>
inline auto INVOKE(T Base::*pmf, Derived&& ref, Args&&... args) ->
template <class PMF, class Pointer, class... Args>
inline auto INVOKE(PMF&& pmf, Pointer&& ptr, Args&&... args) ->
} // namespace detail
// Minimal C++11 implementation:
template <class> struct result_of;
template <class F, class... ArgTypes>
struct result_of<F(ArgTypes...)> {
    using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<ArgTypes>()...));
// Conforming C++14 implementation (is also a valid C++11 implementation):
namespace detail {
template <typename AlwaysVoid, typename, typename...>
struct invoke_result { };
template <typename F, typename...Args>
struct invoke_result<decltype(void(detail::INVOKE(std::declval<F>(), std::declval<Args>()...))),
                 F, Args...> {
    using type = decltype(detail::INVOKE(std::declval<F>(), std::declval<Args>()...));
} // namespace detail
template <class> struct result_of;
template <class F, class... ArgTypes>
struct result_of<F(ArgTypes...)> : detail::invoke_result<void, F, ArgTypes...> {};
template <class F, class... ArgTypes>
struct invoke_result : detail::invoke_result<void, F, ArgTypes...> {};

[edit] Notes

As formulated in C++11, the behavior of std::result_of is undefined when INVOKE(std::declval<F>(), std::declval<ArgTypes>()...) is ill-formed (e.g. when F is not a callable type at all). C++14 changes that to a SFINAE (when F is not callable, std::result_of<F(ArgTypes...)> simply doesn't have the type member).

The motivation behind std::result_of is to determine the result of invoking a Callable, in particular if that result type is different for different sets of arguments.

F(Args...) is a function type with Args... being the argument types and F being the return type. As such, std::result_of suffers from several quirks that lead to its deprecation in favor of std::invoke_result in C++17:

  • F cannot be a function type or an array type (but can be a reference to them);
  • if any of the Args has type "array of T" or a function type T, it is automatically adjusted to T*;
  • neither F nor any of Args... can be an abstract class type;
  • if any of Args... has a top-level cv-qualifier, it is discarded;
  • none of Args... may be of type void.

To avoid these quirks, result_of is often used with reference types as F and Args.... For example:

template<class F, class... Args>
std::result_of_t<F&&(Args&&...)> // instead of std::result_of_t<F(Args...)>, which is wrong
  my_invoke(F&& f, Args&&... args) { 
    /* implementation */

[edit] Examples

#include <type_traits>
#include <iostream>
struct S {
    double operator()(char, int&);
    float operator()(int) { return 1.0;}
template<class T>
typename std::result_of<T(int)>::type f(T& t)
    std::cout << "overload of f for callable T\n";
    return t(0);
template<class T, class U>
int f(U u)
    std::cout << "overload of f for non-callable T\n";
    return u;
int main()
    // the result of invoking S with char and int& arguments is double
    std::result_of<S(char, int&)>::type d = 3.14; // d has type double
    static_assert(std::is_same<decltype(d), double>::value, "");
    // the result of invoking S with int argument is float
    std::result_of<S(int)>::type x = 3.14; // x has type float
    static_assert(std::is_same<decltype(x), float>::value, "");
    // result_of can be used with a pointer to member function as follows
    struct C { double Func(char, int&); };
    std::result_of<decltype(&C::Func)(C, char, int&)>::type g = 3.14;
    static_assert(std::is_same<decltype(g), double>::value, "");
    f<C>(1); // may fail to compile in C++11; calls the non-callable overload in C++14


overload of f for non-callable T

[edit] See also

invokes any Callable object with given arguments
(function template) [edit]
checks if a type can be invoked (as if by std::invoke) with the given argument types
(class template) [edit]
obtains a reference to its argument for use in unevaluated context
(function template) [edit]