std::ranges::equal
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I1, std::sentinel_for<I1> S1, std::input_iterator I2, std::sentinel_for<I2> S2, |
(1) | (since C++20) |
template< ranges::input_range R1, ranges::input_range R2, class Pred = ranges::equal_to, |
(2) | (since C++20) |
[
first1,
last1)
are equal to the projected values of the range [
first2,
last2)
, and false otherwise.Two ranges are considered equal if they have the same number of elements and every pair of corresponding projected elements satisfies pred. That is, std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *first2)) returns true for all pairs of corresponding elements in both ranges.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents |
[edit] Parameters
first1, last1 | - | an iterator-sentinel pair denoting the first range of the elements to compare |
r1 | - | the first range of the elements to compare |
first2, last2 | - | an iterator-sentinel pair denoting the second range of the elements to compare |
r2 | - | the second range of the elements to compare |
pred | - | predicate to apply to the projected elements |
proj1 | - | projection to apply to the first range of elements |
proj2 | - | projection to apply to the second range of elements |
[edit] Return value
If the length of the range [
first1,
last1)
does not equal the length of the range [
first2,
last2)
, returns false.
If the elements in the two ranges are equal after projection, returns true.
Otherwise returns false.
[edit] Notes
ranges::equal
should not be used to compare the ranges formed by the iterators from std::unordered_set, std::unordered_multiset, std::unordered_map, or std::unordered_multimap because the order in which the elements are stored in those containers may be different even if the two containers store the same elements.
When comparing entire containers or string views for equality, operator== for the corresponding type are usually preferred.
ranges::equal
is not guaranteed to be short-circuit. E.g. if the first pair elements of both ranges do not compare equal, the rest of elements may also be compared. Non-short-circuit comparison may happen when the ranges are compared with std::memcmp or implementation-specific vectorized algorithms.
[edit] Complexity
At most min(last1 - first1, last2 - first2) applications of the predicate and corresponding projections.
However, if S1 and S2 both model std::sized_sentinel_for their respective iterators, and last1 - first1 != last2 - first2 then no applications of the predicate are made (size mismatch is detected without looking at any elements).
[edit] Possible implementation
struct equal_fn { template<std::input_iterator I1, std::sentinel_for<I1> S1, std::input_iterator I2, std::sentinel_for<I2> S2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2> constexpr bool operator()(I1 first1, S1 last1, I2 first2, S2 last2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { if constexpr (std::sized_sentinel_for<S1, I1> and std::sized_sentinel_for<S2, I2>) if (std::ranges::distance(first1, last1) != std::ranges::distance(first2, last2)) return false; for (; first1 != last1; ++first1, (void)++first2) if (!std::invoke(pred, std::invoke(proj1, *first1), std::invoke(proj2, *first2))) return false; return true; } template<ranges::input_range R1, ranges::input_range R2, class Pred = ranges::equal_to, class Proj1 = std::identity, class Proj2 = std::identity> requires std::indirectly_comparable<ranges::iterator_t<R1>, ranges::iterator_t<R2>, Pred, Proj1, Proj2> constexpr bool operator()(R1&& r1, R2&& r2, Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const { return (*this)(ranges::begin(r1), ranges::end(r1), ranges::begin(r2), ranges::end(r2), std::ref(pred), std::ref(proj1), std::ref(proj2)); } }; inline constexpr equal_fn equal; |
[edit] Example
The following code uses ranges::equal to test if a string is a palindrome.
#include <algorithm> #include <iomanip> #include <iostream> #include <ranges> #include <string_view> constexpr bool is_palindrome(const std::string_view s) { namespace views = std::views; auto forward = s | views::take(s.size() / 2); auto backward = s | views::reverse | views::take(s.size() / 2); return std::ranges::equal(forward, backward); } void test(const std::string_view s) { std::cout << std::quoted(s) << " is " << (is_palindrome(s) ? "" : "not ") << "a palindrome\n"; } int main() { test("radar"); test("hello"); static_assert(is_palindrome("ABBA") and not is_palindrome("AC/DC")); }
Output:
"radar" is a palindrome "hello" is not a palindrome
[edit] See also
(C++20)(C++20)(C++20) |
finds the first element satisfying specific criteria (algorithm function object) |
returns true if one range is lexicographically less than another (algorithm function object) | |
(C++20) |
finds the first position where two ranges differ (algorithm function object) |
(C++20) |
searches for the first occurrence of a range of elements (algorithm function object) |
(C++20) |
returns range of elements matching a specific key (algorithm function object) |
function object implementing x == y (class template) | |
determines if two sets of elements are the same (function template) |