std::ranges::fold_left_first_with_iter, std::ranges::fold_left_first_with_iter_result
Defined in header <algorithm>
|
||
Call signature |
||
template< std::input_iterator I, std::sentinel_for<I> S, |
(1) | (since C++23) |
template< ranges::input_range R, |
(2) | (since C++23) |
Helper concepts |
||
template< class F, class T, class I > concept __indirectly_binary_left_foldable = // exposition only |
(3) | (since C++23) |
Helper class template |
||
template< class I, class T > using fold_left_first_with_iter_result = ranges::in_value_result<I, T>; |
(4) | (since C++23) |
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(x1, x2), x3), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left_first_with_iter
behaves like std::accumulate's overload that accepts a binary predicate, except that the *first is used internally as an initial element.
The behavior is undefined if [first, last)
is not a valid range.
[first, last)
.r
as the range, as if by using ranges::begin(r) as first
and ranges::end(r) as last
.template< class F, class T, class I, class U > concept __indirectly_binary_left_foldable_impl = // exposition only std::movable<T> && std::movable<U> && std::convertible_to<T, U> && std::invocable<F&, U, std::iter_reference_t<I>> && std::assignable_from<U&, std::invoke_result_t<F&, U, std::iter_reference_t<I>>>; template< class F, class T, class I > concept __indirectly_binary_left_foldable = // exposition only std::copy_constructible<F> && std::indirectly_readable<I> && std::invocable<F&, T, std::iter_reference_t<I>> && std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> && __indirectly_binary_left_foldable_impl<F, T, I, std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>>;
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Contents |
[edit] Parameters
first, last | - | the range of elements to fold |
r | - | the range of elements to fold |
f | - | the binary function object |
[edit] Return value
Let U be decltype(ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f)).
- The member ranges::in_value_result::in holds an iterator to the end of the range.
- The member ranges::in_value_result::value holds the result of the left-fold of given range over f.
[edit] Possible implementations
class fold_left_first_with_iter_fn { template <class O, class I, class S, class F> constexpr auto impl(I&& first, S&& last, F f) const { using U = decltype( ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f) ); using Ret = ranges::fold_left_first_with_iter_result<O, std::optional<U>>; if (first == last) return Ret{std::move(first), std::optional<U>()}; std::optional<U> init(std::in_place, *first); for (++first; first != last; ++first) *init = std::invoke(f, std::move(*init), *first); return Ret{std::move(first), std::move(init)}; } public: template <std::input_iterator I, std::sentinel_for<I> S, __indirectly_binary_left_foldable<std::iter_value_t<I>, I> F> requires std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>> constexpr auto operator()( I first, S last, F f ) const { return impl<I>(std::move(first), std::move(last), std::ref(f)); } template <ranges::input_range R, __indirectly_binary_left_foldable< ranges::range_value_t<R>, ranges::iterator_t<R>> F> requires std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>> constexpr auto operator()( R&& r, F f ) const { return impl<ranges::borrowed_iterator_t<R>>( ranges::begin(r), ranges::end(r), std::ref(f) ); } }; inline constexpr fold_left_first_with_iter_fn fold_left_first_with_iter; |
[edit] Complexity
Exactly ranges::distance(first, last) - 1 (assuming the range is not empty) applications of the function object f.
[edit] Notes
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init | U |
ranges::fold_left_first | left | first element | std::optional<U> |
ranges::fold_right | right | init | U |
ranges::fold_right_last | right | last element | std::optional<U> |
ranges::fold_left_with_iter | left | init |
(1) std::in_value_result<I, U> (2) std::in_value_result<BR, U>, where BR is ranges::borrowed_iterator_t<R> |
ranges::fold_left_first_with_iter | left | first element |
(1) std::in_value_result<I, std::optional<U>> (2) std::in_value_result<BR, std::optional<U>> where BR is ranges::borrowed_iterator_t<R> |
Feature-test macro | Value | Std | Comment |
---|---|---|---|
__cpp_lib_ranges_fold |
202207L | (C++23) | std::ranges fold algorithms
|
[edit] Example
#include <algorithm> #include <cassert> #include <functional> #include <iostream> #include <ranges> #include <utility> #include <vector> int main() { std::vector<int> v{1, 2, 3, 4, 5, 6, 7, 8}; auto sum = std::ranges::fold_left_first_with_iter ( v.begin(), v.end(), std::plus<int>() ); std::cout << "sum: " << sum.value.value() << '\n'; assert(sum.in == v.end()); auto mul = std::ranges::fold_left_first_with_iter(v, std::multiplies<int>()); std::cout << "mul: " << mul.value.value() << '\n'; assert(mul.in == v.end()); // get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data = {{'A', 2.f}, {'B', 3.f}, {'C', 7.f}}; auto sec = std::ranges::fold_left_first_with_iter ( data | std::ranges::views::values, std::multiplies<>() ); std::cout << "sec: " << sec.value.value() << '\n'; // use a program defined function object (lambda-expression): auto lambda = [](int x, int y){ return x + y + 2; }; auto val = std::ranges::fold_left_first_with_iter(v, lambda); std::cout << "val: " << val.value.value() << '\n'; assert(val.in == v.end()); }
Output:
sum: 36 mul: 40320 sec: 42 val: 50
[edit] References
- C++23 standard (ISO/IEC 14882:2023):
- 27.6.18 Fold [alg.fold]
[edit] See also
(C++23) |
left-folds a range of elements (niebloid) |
(C++23) |
left-folds a range of elements using the first element as an initial value (niebloid) |
(C++23) |
right-folds a range of elements (niebloid) |
(C++23) |
right-folds a range of elements using the last element as an initial value (niebloid) |
(C++23) |
left-folds a range of elements, and returns a pair (iterator, value) (niebloid) |
sums up or folds a range of elements (function template) | |
(C++17) |
similar to std::accumulate, except out of order (function template) |