Namespaces
Variants
Views
Actions

std::indirect_binary_predicate

From cppreference.com
< cpp‎ | iterator
 
 
Iterator library
Iterator concepts
Iterator primitives
Algorithm concepts and utilities
Indirect callable concepts
indirect_binary_predicate
(C++20)
Common algorithm requirements
(C++20)
(C++20)
(C++20)
Utilities
(C++20)

Iterator adaptors
Iterator customization points
Iterator operations
(C++11)    
(C++11)
Range access
(C++11)(C++14)
(C++14)(C++14)    
(C++11)(C++14)
(C++14)(C++14)    
(C++17)(C++20)
(C++17)
(C++17)
 
Defined in header <iterator>
template< class F, class I1, class I2 >

concept indirect_binary_predicate =
    std::indirectly_readable<I1> &&
    std::indirectly_readable<I2> &&
    std::copy_constructible<F> &&
    std::predicate<F&, std::iter_value_t<I1>&, std::iter_value_t<I2>&> &&
    std::predicate<F&, std::iter_value_t<I1>&, std::iter_reference_t<I2>> &&
    std::predicate<F&, std::iter_reference_t<I1>, std::iter_value_t<I2>&> &&
    std::predicate<F&, std::iter_reference_t<I1>, std::iter_reference_t<I2>> &&

    std::predicate<F&, std::iter_common_reference_t<I1>, std::iter_common_reference_t<I2>>;
(since C++20)

The concept indirect_binary_predicate specifies requirements for algorithms that call binary predicates as their arguments. The key difference between this concept and std::predicate is that it is applied to the types that I1 and I2 references, rather than I1 and I2 themselves.

[edit] Semantic requirements

F, I1, and I2 model indirect_binary_predicate only if all concepts it subsumes are modeled.