Namespaces
Variants
Views
Actions

std::ratio_divide

From cppreference.com
< cpp‎ | numeric‎ | ratio
 
 
 
Compile time rational arithmetic
(C++11)
Arithmetic
(C++11)
ratio_divide
(C++11)
Comparison
(C++11)
 
Defined in header <ratio>
template< class R1, class R2 >
using ratio_divide = /* see below */;
(since C++11)

The alias template std::ratio_divide denotes the result of dividing two exact rational fractions represented by the std::ratio specializations R1 and R2.

The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::den and Denom == R1::den * R2::num (computed without arithmetic overflow), U is std::ratio<Num, Denom>::num and V is std::ratio<Num, Denom>::den.

[edit] Notes

If U or V is not representable in std::intmax_t, the program is ill-formed. If Num or Denom is not representable in std::intmax_t, the program is ill-formed unless the implementation yields correct values for U and V.

The above definition requires that the result of std::ratio_divide<R1, R2> be already reduced to lowest terms; for example, std::ratio_divide<std::ratio<1, 12>, std::ratio<1, 6>> is the same type as std::ratio<1, 2>.

[edit] Example

#include <iostream>
#include <ratio>
 
int main()
{
    using two_third = std::ratio<2, 3>;
    using one_sixth = std::ratio<1, 6>;
    using quotient = std::ratio_divide<two_third, one_sixth>;
    std::cout << "(2/3) / (1/6) = " << quotient::num << '/' << quotient::den << '\n';
}

Output:

(2/3) / (1/6) = 4/1