std::beta, std::betaf, std::betal
Defined in header <cmath>
|
||
(1) | ||
float beta ( float x, float y ); double beta ( double x, double y ); |
(since C++17) (until C++23) |
|
/* floating-point-type */ beta( /* floating-point-type */ x, /* floating-point-type */ y ); |
(since C++23) | |
float betaf( float x, float y ); |
(2) | (since C++17) |
long double betal( long double x, long double y ); |
(3) | (since C++17) |
Defined in header <cmath>
|
||
template< class Arithmetic1, class Arithmetic2 > /* common-floating-point-type */ beta( Arithmetic1 x, Arithmetic2 y ); |
(A) | (since C++17) |
std::beta
for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)Contents |
[edit] Parameters
x, y | - | floating-point or integer values |
[edit] Return value
If no errors occur, value of the beta function of x and y, that is ∫10tx-1
(1-t)(y-1)
dt, or, equivalently,
Γ(x)Γ(y) |
Γ(x+y) |
[edit] Error handling
Errors may be reported as specified in math_errhandling.
- If any argument is NaN, NaN is returned and domain error is not reported.
- The function is only required to be defined where both x and y are greater than zero, and is allowed to report a domain error otherwise.
[edit] Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
std::beta(x, y) equals std::beta(y, x).
When x and y are positive integers, std::beta(x, y) equals(x-1)!(y-1)! |
(x+y-1)! |
⎜
⎝n
k⎞
⎟
⎠=
1 |
(n+1)Β(n-k+1,k+1) |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:
|
(until C++23) |
If num1 and num2 have arithmetic types, then std::beta(num1, num2) has the same effect as std::beta(static_cast</* common-floating-point-type */>(num1), If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided. |
(since C++23) |
[edit] Example
#include <cassert> #include <cmath> #include <iomanip> #include <iostream> #include <numbers> #include <string> long binom_via_beta(int n, int k) { return std::lround(1 / ((n + 1) * std::beta(n - k + 1, k + 1))); } long binom_via_gamma(int n, int k) { return std::lround(std::tgamma(n + 1) / (std::tgamma(n - k + 1) * std::tgamma(k + 1))); } int main() { std::cout << "Pascal's triangle:\n"; for (int n = 1; n < 10; ++n) { std::cout << std::string(20 - n * 2, ' '); for (int k = 1; k < n; ++k) { std::cout << std::setw(3) << binom_via_beta(n, k) << ' '; assert(binom_via_beta(n, k) == binom_via_gamma(n, k)); } std::cout << '\n'; } // A spot-check const long double p = 0.123; // a random value in [0, 1] const long double q = 1 - p; const long double π = std::numbers::pi_v<long double>; std::cout << "\n\n" << std::setprecision(19) << "β(p,1-p) = " << std::beta(p, q) << '\n' << "π/sin(π*p) = " << π / std::sin(π * p) << '\n'; }
Output:
Pascal's triangle: 2 3 3 4 6 4 5 10 10 5 6 15 20 15 6 7 21 35 35 21 7 8 28 56 70 56 28 8 9 36 84 126 126 84 36 9 β(p,1-p) = 8.335989149587307836 π/sin(π*p) = 8.335989149587307834
[edit] See also
(C++11)(C++11)(C++11) |
gamma function (function) |
[edit] External links
Weisstein, Eric W. "Beta Function." From MathWorld — A Wolfram Web Resource. |