std::legendre, std::legendref, std::legendrel
Defined in header <cmath>
|
||
(1) | ||
float legendre ( unsigned int n, float x ); double legendre ( unsigned int n, double x ); |
(since C++17) (until C++23) |
|
/* floating-point-type */ legendre( unsigned int n, /* floating-point-type */ x ); |
(since C++23) | |
float legendref( unsigned int n, float x ); |
(2) | (since C++17) |
long double legendrel( unsigned int n, long double x ); |
(3) | (since C++17) |
Defined in header <cmath>
|
||
template< class Integer > double legendre ( unsigned int n, Integer x ); |
(A) | (since C++17) |
std::legendre
for all cv-unqualified floating-point types as the type of the parameter x.(since C++23)Contents |
[edit] Parameters
n | - | the degree of the polynomial |
x | - | the argument, a floating-point or integer value |
[edit] Return value
If no errors occur, value of the order-n unassociated Legendre polynomial of x, that is1 |
2n n! |
dn |
dxn |
-1)n
, is returned.
[edit] Error handling
Errors may be reported as specified in math_errhandling.
- If the argument is NaN, NaN is returned and domain error is not reported
- The function is not required to be defined for |x|>1
- If n is greater or equal than 128, the behavior is implementation-defined
[edit] Notes
Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__
is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__
before including any standard library headers.
Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath
and namespace std::tr1
.
An implementation of this function is also available in boost.math.
The first few Legendre polynomials are:
Function | Polynomial | ||
---|---|---|---|
legendre(0, x) | 1 | ||
legendre(1, x) | x | ||
legendre(2, x) |
- 1) | ||
legendre(3, x) |
- 3x) | ||
legendre(4, x) |
- 30x2 + 3) |
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::legendre(int_num, num) has the same effect as std::legendre(int_num, static_cast<double>(num)).
[edit] Example
#include <cmath> #include <iostream> double P3(double x) { return 0.5 * (5 * std::pow(x, 3) - 3 * x); } double P4(double x) { return 0.125 * (35 * std::pow(x, 4) - 30 * x * x + 3); } int main() { // spot-checks std::cout << std::legendre(3, 0.25) << '=' << P3(0.25) << '\n' << std::legendre(4, 0.25) << '=' << P4(0.25) << '\n'; }
Output:
-0.335938=-0.335938 0.157715=0.157715
[edit] See also
(C++17)(C++17)(C++17) |
Laguerre polynomials (function) |
(C++17)(C++17)(C++17) |
Hermite polynomials (function) |
[edit] External links
Weisstein, Eric W. "Legendre Polynomial." From MathWorld — A Wolfram Web Resource. |