Namespaces
Variants
Views
Actions

std::conjunction

From cppreference.com
< cpp‎ | types
 
 
Metaprogramming library
Type traits
Type categories
(C++11)
(C++14)  
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Type properties
(C++11)
(C++11)
(C++14)
(C++11)
(C++11)(until C++20*)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
conjunction
(C++17)
(C++17)
Supported operations
Relationships and property queries
Type modifications
(C++11)(C++11)(C++11)
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
(C++11)
(C++17)

(C++11)(until C++20*)(C++17)
Compile-time rational arithmetic
Compile-time integer sequences
 
Defined in header <type_traits>
template< class... B >
struct conjunction;
(since C++17)

Forms the logical conjunction of the type traits B..., effectively performing a logical AND on the sequence of traits.

The specialization std::conjunction<B1, ..., BN> has a public and unambiguous base that is

  • if sizeof...(B) == 0, std::true_type; otherwise
  • the first type Bi in B1, ..., BN for which bool(Bi::value) == false, or BN if there is no such type.

The member names of the base class, other than conjunction and operator=, are not hidden and are unambiguously available in conjunction.

Conjunction is short-circuiting: if there is a template type argument Bi with bool(Bi::value) == false, then instantiating conjunction<B1, ..., BN>::value does not require the instantiation of Bj::value for j > i.

If the program adds specializations for std::conjunction or std::conjunction_v, the behavior is undefined.

Contents

[edit] Template parameters

B... - every template argument Bi for which Bi::value is instantiated must be usable as a base class and define member value that is convertible to bool

[edit] Helper variable template

template< class... B >
inline constexpr bool conjunction_v = conjunction<B...>::value;
(since C++17)

[edit] Possible implementation

template<class...> struct conjunction : std::true_type {};
template<class B1> struct conjunction<B1> : B1 {};
template<class B1, class... Bn>
struct conjunction<B1, Bn...>
    : std::conditional_t<bool(B1::value), conjunction<Bn...>, B1> {};

[edit] Notes

A specialization of conjunction does not necessarily inherit from either std::true_type or std::false_type: it simply inherits from the first B whose ::value, explicitly converted to bool, is false, or from the very last B when all of them convert to true. For example, std::conjunction<std::integral_constant<int, 2>, std::integral_constant<int, 4>>::value is 4.

The short-circuit instantiation differentiates conjunction from fold expressions: a fold expression, like (... && Bs::value), instantiates every B in Bs, while std::conjunction_v<Bs...> stops instantiation once the value can be determined. This is particularly useful if the later type is expensive to instantiate or can cause a hard error when instantiated with the wrong type.

Feature-test macro Value Std Feature
__cpp_lib_logical_traits 201510L (C++17) Logical operator type traits

[edit] Example

#include <iostream>
#include <type_traits>
 
// func is enabled if all Ts... have the same type as T
template<typename T, typename... Ts>
std::enable_if_t<std::conjunction_v<std::is_same<T, Ts>...>>
func(T, Ts...)
{
    std::cout << "all types in pack are T\n";
}
 
// otherwise
template<typename T, typename... Ts>
std::enable_if_t<!std::conjunction_v<std::is_same<T, Ts>...>>
func(T, Ts...)
{
    std::cout << "not all types in pack are T\n";
}
 
template<typename T, typename... Ts>
constexpr bool all_types_are_same = std::conjunction_v<std::is_same<T, Ts>...>;
 
static_assert(all_types_are_same<int, int, int>);
static_assert(not all_types_are_same<int, int&, int>);
 
int main()
{
    func(1, 2, 3);
    func(1, 2, "hello!");
}

Output:

all types in pack are T
not all types in pack are T

[edit] See also

(C++17)
logical NOT metafunction
(class template) [edit]
variadic logical OR metafunction
(class template) [edit]